Vital Earth Resources 706 East Broadway, Gladewater, Texas 75647 (903) 845-2163 FAX: (903) 845-2262

2012 Crop Results

Vitazyme and Soil Respiration

Researcher: Hygrotech, South Africa

Research Coordinator: Cornelius Oosthuizon, I.E. Organics, South Africa

Location of study: Sondveld Region, Western Cape Province, South Africa

Soil type: sand Experimental design: On an organic farm, very sandy soil was collected, some of which was treated with Vitazyme at 1 liter/ha (13 oz/acre). The respiration of soil organisms was measured on three samples of the Vitazyme treated soil, and on three samples of untreated soil. The methodology of determining CO₂ evolution was not indicated in the report.

1. Control

2. Vitazyme

Vitazyme application: No details were given. Respiration results:

Treatment	Sample weight	Sampling time	CO ₂ evolved	Change in CO ₂
	grams, average	minutes	mg/kg of soil/hour	mg/kg of soil/hour
1. Control	20.004	30	9.15 b	
2. Vitazyme	20.006	30	14.40 a	5.25 (+57%)
Block P	0.1577			
Treatment P	0.0034**			
Model P	0.0099**			
CV _{0.10}	3.20%			
LSD _{0.10}	1.33 mg/kg of soil/hour			

Increase in soil respiration with Vitazyme: 57%

A great burst of CO₂ evolution resulted from Vitazyme application to this very sandy soil, showing that the product's active agents aggressively stimulate soil microbiota.

Conclusions: This South African study on soil respiration shows that Vitazyme greatly increased (+57%) CO₂ evolution in a very sandy organically treated soil in Western Cape

Province. The product's active agents interacted with these bacteria, fungi, and other microbes to stimulate metabolic activity quite profoundly. Average conventionally treated Sandvold soils release from 3 to 5 mg/kg of soil/hr of CO₂, while the non-Vitazyme treated soils of this organic farm released much more than that — 9.15 mg/kg of soil/hr — and Vitazyme treatment boosted CO₂ release far above this higher level.

